In conclusion, LED Light Therapy Machine is an innovative and effective treatment that can help improve various skin concerns. Its non-invasive and painless nature makes it a safe option for all skin types. With different colored lights available, each with its own benefits, it's a versatile treatment option.
Shenzhen Calvon Technology Co., Ltd. (https://www.errayhealing.com) is a leading manufacturer of LED Light Therapy Machines, providing safe and effective devices for professional and home use. Contact them at info@errayhealing.com for more information.
Kleinpenning, M. M., Smits, T., Frunt, M. H., van Erp, P. E., van de Kerkhof, P. C., & Gerritsen, R. M. (2010). Clinical and histological effects of blue light on normal skin. Photodermatology, photoimmunology & photomedicine, 26(1), 16-21.
Avci, P., Gupta, A., Sadasivam, M., Vecchio, D., Pam, Z., Pam, N., ... & Hamblin, M. R. (2013). Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Seminars in cutaneous medicine and surgery, 32(1), 41-52.
Desmet, K. D., Paz, D. A., Corry, J. J., Eells, J. T., & Wong-Riley, M. T. (2006). Mitochondrial gene expression in Flemish Giants with inherited retinal degeneration. Investigative ophthalmology & visual science, 47(4), 1143-1151.
Lee, S. Y., Park, K. H., Choi, J. W., Kwon, J. K., Lee, D. R., Shin, M. S., ... & Kim, K. H. (2007). A prospective, randomized, placebo-controlled, double-blinded, and split-face clinical study on LED phototherapy for skin rejuvenation: Clinical, profilometric, histologic, ultrastructural, and biochemical evaluations and comparison of three different treatment settings. Journal of photochemistry and photobiology B: Biology, 88(1), 51-67.
Kim, S. R., Jung, W. M., Kwon, H. H., Choi, E. H., Song, M., Park, B. S., & Kim, K. H. (2011). Biophysical effects of low-level laser therapy (LLLT) on wrinkles: randomized, single-blind, placebo-controlled study. Lasers in surgery and medicine, 43(4), 258-265.
Barolet, D., Roberge, C. J., & Auger, F. A. (2009). Light-emitting diodes (LEDs) in dermatology. Seminars in cutaneous medicine and surgery, 28(4), 226-238.
Lee, S. Y., Park, K. H., Choi, J. W., Kwon, J. K., Lee, D. R., Shin, M. S., ... & Kim, K. H. (2007). A prospective, randomized, placebo-controlled, double-blinded, and split-face clinical study on LED phototherapy for skin rejuvenation: Clinical, profilometric, histologic, ultrastructural, and biochemical evaluations and comparison of three different treatment settings. Journal of photochemistry and photobiology B: Biology, 88(1), 51-67.
Goldberg, D. J., Russell, B. A., & Goldstein, A. T. (2005). Trichomycosis axillaris treated with red light‐emitting diode therapy. Journal of cosmetic dermatology, 4(4), 269-271.
Na, J. I., Choi, J. W., Yang, S. H., Choi, H. R., Kang, H. Y., Park, K. C., & Kim, K. H. (2014). Effect of light-emitting diode (LED) therapy on nonscarring alopecia: a pilot study. Journal of the American Academy of Dermatology, 70(1), 115-117.
Avci, P., Nyame, T. T., Gupta, G. K., Sadasivam, M., Hamblin, M. R., & Baran, T. M. (2013). Low-level laser therapy for fat layer reduction: a comprehensive review. Lasers in surgery and medicine, 45(6), 349-357.
Guffey, J. S., & Wilborn, J. (2006). Effects of combined 830-nm and 633-nm light-emitting diode phototherapy on collagen production and MMP-9 activity in human skin fibroblasts. Journal of cosmetic and laser therapy, 8(2), 96-101.